Haiti
Spatially-Heterogeneous Causal Bayesian Networks for Seismic Multi-Hazard Estimation: A Variational Approach with Gaussian Processes and Normalizing Flows
Li, Xuechun, Gao, Shan, Gao, Runyu, Xu, Susu
Earthquakes cause harm not only through direct ground shaking but also by triggering secondary ground failures such as landslides and liquefaction. These combined effects lead to devastating consequences, including structural damage and human casualties. A striking illustration is the 2021 Haiti earthquake, which initiated over 7,000 landslides covering more than 80 square kilometers. This catastrophic event resulted in damage or destruction to over 130,000 buildings, claimed 2,248 lives, and left more than 12,200 people injured [1]. Rapidly identifying where and how severely ground failures and structural damage have occurred following an earthquake is essential for effective victim rescue operations within the crucial "Golden 72 Hour" window, and plays a vital role in developing effective post-disaster recovery plans [2, 3]. Over the years, researchers have developed various approaches for estimating the location and intensity of earthquake-induced ground failures and building damage.
Lost in Cultural Translation: Do LLMs Struggle with Math Across Cultural Contexts?
Karim, Aabid, Karim, Abdul, Lohana, Bhoomika, Keon, Matt, Singh, Jaswinder, Sattar, Abdul
Large Language Models (LLMs) have significantly advanced various fields, particularly coding, mathematical reasoning, and logical problem solving. However, a critical question remains: Do these mathematical reasoning abilities persist when LLMs are presented with culturally adapted math problems? Specifically, how do LLMs perform when faced with math problems embedded in cultural contexts that have no significant representation in main stream web-scale AI training data? To explore this, we generated six synthetic cultural datasets from GSM8K, a widely used benchmark for assessing LLMs' mathematical reasoning skills. While preserving the mathematical logic and numerical values of the original GSM8K test set, we modify cultural elements such as personal names, food items, place names, etc. These culturally adapted datasets provide a more reliable framework for evaluating LLMs' mathematical reasoning under shifting cultural contexts. Our findings reveal that LLMs struggle with math problems when cultural references change, even though the underlying mathematical structure remains constant. Smaller models exhibit greater performance drops compared to larger models. Interestingly, our results also suggest that cultural familiarity can enhance mathematical reasoning. Even models with no explicit mathematical training but exposure to relevant cultural contexts sometimes outperform larger, mathematically proficient models on culturally embedded math problems. This study highlights the impact of cultural context on the mathematical reasoning abilities of LLMs, underscoring the need for more diverse and representative training data to improve robustness in real-world applications. The benchmark data sets and script for reproducing the results are available at https://github.com/akarim23131/Lost_in_Cultural_Translation
Haiti police raid gang leader's stronghold in capital
Haiti police raid gang leader's stronghold in capital 3 hours agoShareSaveLeonardo RochaBBC World Service Americas regional editor Jaroslav LukivBBC NewsShareSaveReutersGang control in Port-au-Prince has led to an almost complete breakdown of law and order The government of Haiti says police have launched a large-scale operation in a shantytown controlled by powerful gang leader Jimmy Chรฉrizier, who is widely known as Barbecue. The authorities say several gang members have been killed in the Lower Delmas area of the capital Port-au-Prince. Local reports say military drones carrying explosives are being used in the operation. He said it was the work of a special task force created two days ago to tackle insecurity.Reuters Jimmy'Barbecue' Chรฉrizier has become one of the most powerful gang leaders in Haiti Chรฉrizier, aged 47, is the feared leader of Viv Ansam (Live Together), a coalition of gangs that control much of the city. It is not clear whether Kenyan police officers deployed in Haiti last year to help fight the gangs are involved in the security operation.
A Machine Learning Approach to Automatic Fall Detection of Soldiers
Soares, Leandro, Venturini, Gustavo, Gomes, Josรฉ, Efigenio, Jonathan, Rangel, Pablo, Gonzalez, Pedro, Santos, Joel dos, Brandรฃo, Diego, Bezerra, Eduardo
Military personnel and security agents often face significant physical risks during conflict and engagement situations, particularly in urban operations. Ensuring the rapid and accurate communication of incidents involving injuries is crucial for the timely execution of rescue operations. This article presents research conducted under the scope of the Brazilian Navy's ``Soldier of the Future'' project, focusing on the development of a Casualty Detection System to identify injuries that could incapacitate a soldier and lead to severe blood loss. The study specifically addresses the detection of soldier falls, which may indicate critical injuries such as hypovolemic hemorrhagic shock. To generate the publicly available dataset, we used smartwatches and smartphones as wearable devices to collect inertial data from soldiers during various activities, including simulated falls. The data were used to train 1D Convolutional Neural Networks (CNN1D) with the objective of accurately classifying falls that could result from life-threatening injuries. We explored different sensor placements (on the wrists and near the center of mass) and various approaches to using inertial variables, including linear and angular accelerations. The neural network models were optimized using Bayesian techniques to enhance their performance. The best-performing model and its results, discussed in this article, contribute to the advancement of automated systems for monitoring soldier safety and improving response times in engagement scenarios.
BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Chen, Hongruixuan, Song, Jian, Dietrich, Olivier, Broni-Bediako, Clifford, Xuan, Weihao, Wang, Junjue, Shao, Xinlei, Wei, Yimin, Xia, Junshi, Lan, Cuiling, Schindler, Konrad, Yokoya, Naoto
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 12 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
Face the Facts! Evaluating RAG-based Fact-checking Pipelines in Realistic Settings
Russo, Daniel, Menini, Stefano, Staiano, Jacopo, Guerini, Marco
Natural Language Processing and Generation systems have recently shown the potential to complement and streamline the costly and time-consuming job of professional fact-checkers. In this work, we lift several constraints of current state-of-the-art pipelines for automated fact-checking based on the Retrieval-Augmented Generation (RAG) paradigm. Our goal is to benchmark, under more realistic scenarios, RAG-based methods for the generation of verdicts - i.e., short texts discussing the veracity of a claim - evaluating them on stylistically complex claims and heterogeneous, yet reliable, knowledge bases. Our findings show a complex landscape, where, for example, LLM-based retrievers outperform other retrieval techniques, though they still struggle with heterogeneous knowledge bases; larger models excel in verdict faithfulness, while smaller models provide better context adherence, with human evaluations favouring zero-shot and one-shot approaches for informativeness, and fine-tuned models for emotional alignment.
CEHA: A Dataset of Conflict Events in the Horn of Africa
Bai, Rui, Lu, Di, Ran, Shihao, Olson, Elizabeth, Lamba, Hemank, Cahill, Aoife, Tetreault, Joel, Jaimes, Alex
Natural Language Processing (NLP) of news articles can play an important role in understanding the dynamics and causes of violent conflict. Despite the availability of datasets categorizing various conflict events, the existing labels often do not cover all of the fine-grained violent conflict event types relevant to areas like the Horn of Africa. In this paper, we introduce a new benchmark dataset Conflict Events in the Horn of Africa region (CEHA) and propose a new task for identifying violent conflict events using online resources with this dataset. The dataset consists of 500 English event descriptions regarding conflict events in the Horn of Africa region with fine-grained event-type definitions that emphasize the cause of the conflict. This dataset categorizes the key types of conflict risk according to specific areas required by stakeholders in the Humanitarian-Peace-Development Nexus. Additionally, we conduct extensive experiments on two tasks supported by this dataset: Event-relevance Classification and Event-type Classification. Our baseline models demonstrate the challenging nature of these tasks and the usefulness of our dataset for model evaluations in low-resource settings with limited number of training data.
Amortized nonmyopic active search via deep imitation learning
Nguyen, Quan, Sarkar, Anindya, Garnett, Roman
Active search formalizes a specialized active learning setting where the goal is to collect members of a rare, valuable class. The state-of-the-art algorithm approximates the optimal Bayesian policy in a budget-aware manner, and has been shown to achieve impressive empirical performance in previous work. However, even this approximate policy has a superlinear computational complexity with respect to the size of the search problem, rendering its application impractical in large spaces or in real-time systems where decisions must be made quickly. We study the amortization of this policy by training a neural network to learn to search. To circumvent the difficulty of learning from scratch, we appeal to imitation learning techniques to mimic the behavior of the expert, expensive-to-compute policy. Our policy network, trained on synthetic data, learns a beneficial search strategy that yields nonmyopic decisions carefully balancing exploration and exploitation. Extensive experiments demonstrate our policy achieves competitive performance at real-world tasks that closely approximates the expert's at a fraction of the cost, while outperforming cheaper baselines.
DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery
Alisjahbana, Irene, Li, Jiawei, Ben, null, Strong, null, Zhang, Yue
Satellite imagery has played an increasingly important role in post-disaster building damage assessment. Unfortunately, current methods still rely on manual visual interpretation, which is often time-consuming and can cause very low accuracy. To address the limitations of manual interpretation, there has been a significant increase in efforts to automate the process. We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models. We show our results submitted as part of the xView2 Challenge, a competition to design better models for identifying buildings and their damage level after exposure to multiple kinds of natural disasters. Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66, surpassing the xView2 challenge baseline F1 score of 0.28. We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task due to the visual similarity between different damage levels and different damage distribution between disaster types, highlighting the fact that it may be important to have a probabilistic prior estimate regarding disaster damage in order to obtain accurate predictions.
Violence in Haiti puts focus on how to unravel gangs' grip on power
The latest violence in Haiti underscores the powerful sway of armed gangs, which have profited from collusion with the authorities, institutional negligence and political chaos since the 2021 assassination of former Haitian President Jovenel Moise. The gangs sowing terror in the impoverished Caribbean island have morphed into de facto overlords. Now they are demanding the ouster of current Prime Minister Ariel Henry, whose successor would have been sworn in on Feb. 7 if elections scheduled for 2023 had taken place. Here's a closer look at the chokehold the gangs have on the country of 11 million inhabitants.